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Abstract

This paper develops a new approximate dynamic programming algorithm for Markov decision
problems and applies it to a vehicle dispatching problem arising in warehouse management.
The algorithm is of the actor-critic type and uses a least squares temporal difference learning
method. It operates on a sample-path of the system and optimizes the policy within a pre-
specified class parameterized by a parsimonious set of parameters. The method is applicable
to a partially observable Markov decision process setting where the measurements of state
variables are potentially corrupted and the cost is only observed through the imperfect state
observations. We show that under reasonable assumptions, the algorithm converges to a locally
optimal parameter set. We also show that the imperfect cost observations do not affect the
policy and the algorithm minimizes the true expected cost.

In the warehouse application, the problem is to dispatch sensor-equipped forklifts in order
to minimize operating costs involving product movement delays and forklift maintenance. We
consider instances where standard dynamic programming is computationally intractable. Simu-
lation results confirm the theoretical claims of the paper and show that our algorithm converges
more smoothly than earlier actor-critic algorithms while substantially outperforming heuristics
used in practice.

Keywords: Markov decision processes; partial observability, approximate dynamic program-
ming, actor-critic algorithms, warehouse management, vehicle routing.

1 Introduction

Markov Decision Processes (MDPs) are widely used for modeling sequential decision-making prob-
lems that arise in engineering, economics, computer science, and social sciences. However, it is
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well-known that many such problems suffer from the curse of dimensionality, which makes it dif-
ficult to obtain practical solutions for realistically-sized instances. In some cases, the system of
interest is so complex that it is not even feasible to determine all the MDP model parameters
explicitly. To overcome the difficulty, earlier work has focused on simulation-based approximate
dynamic programming (see, [33, 17]), treatments of which have appeared under the terms reinforce-
ment learning [39] and neuro-dynamic programming [10]. Actor-critic algorithms ([4]), which we
adopt in this work, fall within this broad category.

Actor-critic algorithms are typically used to optimize some Randomized Stationary Policy (RSP)
using policy gradient estimation. RSPs are parameterized by a parsimonious set of parameters
and the objective is to optimize the policy (hence, the use of gradient methods) with respect to
these parameters. To that end, one needs to estimate appropriate policy gradients, which can be
done using learning methods and is much more efficient than estimating/computing a cost-to-go
function in the entire state-action space. Many different versions of actor-critic algorithms have
been proposed, e.g., [11, 12, 18, 21, 27, 29, 35], and they have been shown to be quite efficient for
various applications (e.g., in robotics [31] and robot navigation [37], power management of wireless
transmitters[7], biology [23], and optimal bidding for electricity generation companies [20]).

A particularly attractive design of the actor-critic architecture was proposed in [25], where the
critic estimates the policy gradient using sequential observations from a sample path while the
actor updates the policy at the same time, although at a slower time-scale. It was proved that the
estimate of the critic tracks the slowly varying policy asymptotically under suitable conditions. A
center piece of these conditions is a relationship between the actor step-size and the critic step-size,
which will be discussed later.

The critic of [25] uses first-order variants of the Temporal Difference (TD) algorithm (TD(1)
and TD(λ)). However, it has been shown that the least squares TD methods (LSTD and LSPE) are
superior in terms of convergence rate; see [9, 13, 15, 24, 28]. LSTD and LSPE were first proposed
for discounted cost problems in [15] and [8], respectively. Later, [24] showed that the convergence
rate of LSTD is optimal. More recently, [42] proved the convergence of both LSTD and LSPE for
the average cost problem and showed that both LSTD and LSPE enjoy the optimal convergence
rate. Their results clearly demonstrated that LSTD and LSPE converge much faster and more
reliably than TD(1) and TD(λ).

In this paper, we focus on average cost problems with finite state and control space (see [34]
for an introduction on how to solve average cost/reward problems). Motivated by these findings,
we propose an actor-critic algorithm that adopts the least squares learning methods while, at the
same time, maintains the concurrent update architecture of the actor and the critic. Note that
[32] also used LSTD in an actor-critic method mostly applicable to episodic problems, but the
actor there had to wait for the critic to converge before making each policy update. Further, [32]
provided an approach to take advantage of the freedom of augmenting the set of basis functions
for Q-value approximation; something which is not considered in the present paper. An interesting
future direction could be the integration of the work in this paper with elements of [32].

In addition to the use of LSTD, we demonstrate how the proposed algorithm can be modified to
apply to a Partially Observable Markov Decision Process (POMDP) setting. Such a setting is rather
natural in the particular warehouse management application we study. Partial observability in
reinforcement learning algorithms has been studied before (see, for example, [26, 22, 5, 6, 1, 38, 40]).
[40] first proposed the use of actor-critic algorithms for POMDPs with perfectly observable cost



and showed that the gradient estimation can be done by making the critic compute a value function
(conditional mean of the true value function) which does not depend on the states. We built on this
result and consider the case where the cost is also not perfectly observable. We show that under
some separability assumptions, the corresponding actor-critic algorithm converges to the locally
optimal solution despite the imperfect cost information.

The methodological work in this paper is motivated by and applied to the problem of intelli-
gently dispatching forklifts in a warehouse. We are interested in sensor-equipped forklifts that can
determine their status (condition monitoring), their physical location in the warehouse, and con-
tinuously transmit this information wirelessly to some central gateway. Leveraging the information
made available, we design a forklift dispatching algorithm to minimize operational costs associated
with product delivery delays and forklift maintenance. In this application, the POMDP setting is
appropriate as the forklift localization and condition monitoring system is subject to estimation
errors.

In what follows, formulation of the MDP problem is in Section 2. The LSTD actor-critic
algorithm with concurrent updates is presented in Section 3. In Section 4, we propose the LSTD
Partially Observable (LSTD-PO) actor-critic algorithm. The warehouse management application
is then discussed in Section 5, where the effectiveness of the proposed algorithm is demonstrated.
Conclusions are drawn in Section 6.

Notation: We use bold letters to denote vectors and matrices; typically vectors are lower case and
matrices upper case. Vectors are assumed to be column vectors unless explicitly stated otherwise.
For economy of space we write x = (x1, . . . , xn) for the n-dimensional column vector x ∈ R

n.
Transpose is denoted by prime. For any m × n matrix A, with rows a1, . . . ,am ∈ R

n, v(A) will
denote the column vector (a1, . . . ,am). ‖·‖ will denote the Euclidean norm and ‖·‖θ a special norm
in the MDP state-action space we will introduce. 0 denotes a vector or matrix with all components
set to zero and I is the identity matrix.

2 Problem formulation

The problem considered here is rather standard and we will state it briefly.

2.1 Average-cost MDP

Consider an average-cost MDP with finite state and action spaces. Let k denote time, X denote
the state space, and U denote the action space. Consider x ∈ X and u ∈ U. Let g(x, u) be the one-
step cost. The policy candidates are assumed to belong to a parameterized family of Randomized
Stationary Policies (RSPs) {µθ(u|x) | θ ∈ R

n}. That is, given a state x and a parameter θ, the
policy applies action u with probability µθ(u|x). The goal is to optimize the average cost over the
n-dimensional vector θ.

Let p(ξ|x, u) denote the state transition probabilities (which are typically not explicitly known);
that is, p(ξ|x, u) is the probability of transitioning to state ξ given that action u is taken while the
system is at state x. Under suitable ergodicity conditions, {xk} and {xk, uk} are Markov chains
with stationary distributions under a fixed policy. These stationary distributions are denoted by
πθ(x) and ηθ(x, u), respectively. The average cost of the MDP is thus well defined and given by



ᾱ(θ) =
∑

x,u ηθ(x, u)g(x, u). We will not elaborate on the ergodicity conditions, except to note
that it suffices that the process {xk} is irreducible and aperiodic given any θ, and for any x ∈ X

and u ∈ U,
either inf

θ
µθ(u|x) > 0 or µθ(u|x) ≡ 0 (1)

(see Theorem 2.6 of [24]). One possible form of RSP that satisfies this assumption uses the
Boltzmann-like distribution:

µθ(u|x) =
χ(x, u)eh(u,x,θ)

∑

a∈U
χ(x, u)eh(a,x,θ)

, (2)

where χ(x, u) is nonnegative. Note that it is possible to assign zero to χ(x, u) for some pairs
of (x, u), i.e., exclude certain actions for some state values. The Boltzmann policy offers a nice
balance of flexibility and simplicity. Indeed, it turns out to be sufficient for the warehouse vehicle
dispatching problem discussed later in the paper. The RSP can be expensive to compute when the
action space is large, but in typical applications including the warehouse case, the action space is
relatively small.

2.2 Actor-Critic algorithm

With no explicit model of the state transitions but only a sample path denoted by {xk, uk}, the
actor-critic algorithms typically optimize θ locally in the following way: first, the critic estimates
the policy gradient

∇ᾱ(θ) = (
∂ᾱ(θ)

∂θ1
, . . . ,

∂ᾱ(θ)

∂θn

) (3)

using some type of a Temporal Difference (TD) algorithm; then the actor modifies the policy
parameter along the gradient direction.

Define the so-called Qθ-value function as any function satisfying the Poisson equation

Qθ(x, u) = g(x, u) − ᾱ(θ) + (PθQθ)(x, u),

where the operator Pθ denotes taking expectation after one transition, namely, (PθQ)(x, u) =
∑

ξ∈X,ν∈U
µθ(ν|ξ)p(ξ|x, u)Q(ξ, ν). Qθ(x, u) can be interpreted as the expected future excess cost

(on top of the average cost) we incur if we start at state x, apply control u, and then follow the
RSP µθ. Let now

ψθ(x, u) = (ψ1
θ(x, u), . . . , ψn

θ(x, u)),

where

ψi
θ(x, u) =

∂

∂θi

lnµθ(u|x), i = 1, . . . , n.

It is assumed that ψθ(x, u) is bounded and continuously differentiable, which is true for policies
of the form (2). We make the convention ψθ(x, u) = 0 when µθ(u|x) = 0 for all values of θ (cf.
Assumption (1)).

A key fact underlying the actor-critic algorithm is that the policy gradient can be expressed as
(see [25] for more details)

∂ᾱ(θ)

∂θi

= 〈Qθ, ψ
i
θ〉θ, i = 1, . . . , n,



where the operator 〈·, ·〉θ is defined as: for any two functions f1 and f2 of x and u,

〈f1, f2〉θ
△
=
∑

x,u

ηθ(x, u)f1(x, u)f2(x, u). (4)

This is very interesting because it suggests an equivalent class of the Qθ-value function in terms
of estimating the policy gradient. For any function f(x, u), let f be its vector representation in
R
|X||U| — the notations Q and ψi

θ (used next) are instances of this vector representation. Then,
the operator (4) defines a inner product in R

|X||U|. Let ‖ · ‖θ denote the norm induced by this inner
product, i.e., ‖f‖2

θ = 〈f , f〉θ = 〈f, f〉θ. Let also Sθ be the subspace of R
|X||U| spanned by the vectors

ψi
θ, i = 1, . . . , n. Next, denote by Πθ the projection with respect to the norm ‖ · ‖θ onto Sθ, i.e.,

for any f ∈ R
|X||U|, Πθf is the unique vector in Sθ that minimizes ‖f − f̂‖θ over all f̂ ∈ Sθ. Since

for all i
〈Qθ,ψ

i
θ〉θ = 〈ΠθQθ,ψ

i
θ〉θ,

it is sufficient to know the projection of Qθ onto Sθ in order to compute ∇ᾱ(θ). Consequently,
for policy gradient estimation, one may substitute Qθ with a parametric linear architecture of the
following form (see [25]):

Qr

θ(x, u) = ψ′
θ(x, u)r∗, r∗ ∈ R

n. (5)

This dramatically reduces the complexity of learning from the space R
|X||U| to the space R

n. Fur-
thermore, the temporal difference algorithms can be used to learn such an r∗ effectively. The
elements of ψθ(x, u) are understood as basis functions used to develop an approximation of the
policy gradient. To sum up the key point of this section: the policy gradient of the average cost
MDP can be expressed as

∂ᾱ(θ)

∂θi

= 〈ψ′
θ(x, u)r∗, ψi

θ〉θ. (6)

The actor-critic algorithm aims at finding good approximations of r∗, and consequently of the
policy gradient.

3 Actor-Critic algorithm using LSTD

The critic in [25] used either TD(λ) or TD(1). The algorithm we propose uses a least squares TD
method (LSTD) instead, as it has been shown to provide far superior performance ([42]).

The actor and the critic updates take place in the course of a simulation of a single sample path
of the MDP. Let xk denote the state of the system at time k. Let rk, the iterate for r∗ in (5), be
the parameter vector of the critic at time k, θk be the parameter vector of the actor at time k, and
xk+1 be the new state, obtained after action uk is applied when the state is xk. A new action uk+1

is generated according to the RSP corresponding to the actor parameter θk (see [25]). The critic
and the actor carry out the following updates where αk is an estimate of the average cost, zk ∈ R

n

is often called Sutton’s eligibility trace [39] which is a weighted sum of the present and past feature
vectors obtained from the simulations, bk ∈ R

n represents the eligibility trace scaled by the drifts
of single period reward from the average cost, and Ak ∈ R

n×n is a sample estimate of the matrix
formed by zk(ψ

′
θk

(xk+1, uk+1) −ψ
′
θk

(xk, uk)).

LSTD Actor-Critic



Initialization:

Set all entries in z0, α0,A0,b0 and r0 to zeros. Let θ0 take some initial value, potentially
corresponding to a heuristic policy.

Critic:
αk+1 = αk + γk [g(xk, uk) − αk] ,

zk+1 = λzk +ψθk
(xk, uk),

bk+1 = bk + γk [(g(xk, uk) − αk)zk − bk] ,
Ak+1 = Ak + γk

[

zk(ψ
′
θk

(xk+1, uk+1) −ψ′
θk

(xk, uk)) − Ak

]

,

(7)

where λ ∈ [0, 1), γk
△
=

1

k
corresponds to the original LSTD, and finally

rk+1 = −A−1
k bk. (8)

Actor:
θk+1 = θk − βkΓ(rk)ψ

′
θk

(xk+1, uk+1)rkψθk
(xk+1, uk+1). (9)

In the above, {γk} controls the critic step-size, while {βk} and Γ(r) control the actor step-size
together. An implementation of this algorithm needs to make these choices. The role of Γ(r) is
mainly to keep the actor updates bounded, and we can for instance use

Γ(r) =







D

||r||
, if ||r|| > D,

1, otherwise,

for some D > 0. {βk} is a deterministic and non-increasing sequence for which we need to have

∑

k

βk = ∞,
∑

k

β2
k <∞, lim

k→∞

βk

γk

= 0, (10)

An example of {βk} satisfying Eq. (10) is

βk =
c

k ln k
, k > 1,

where c > 0 is a constant parameter.

Note that the critic update above is essentially the standard LSTD [42], and the actor update
is the same as that of [25]. However, the nontrivial task here is to show that the combination
works. Specifically, we need to show that the LSTD critic also converges despite policy updates of
the actor, and consequently the actor converges as well. The conclusion is stated in the following
theorem, while the proof is given in Appendix A.

Theorem 3.1 [Convergence] For the LSTD actor-critic with some step-size sequence {βk} satisfy-
ing (10) and for any ǫ > 0, there exists some λ sufficiently close to 1 such that lim infk ||∇ᾱ(θk)|| < ǫ
w.p.1. That is, θk visits an arbitrary neighborhood of a stationary point infinitely often.



4 Actor-Critic algorithms for POMDPs with indirectly observed

cost

A Partially Observable Markov Decision Process (POMDP) is a generalization of an MDP in which
the system dynamics follow an MDP but the agent cannot directly observe the underlying state.
Instead, it may maintain a probability distribution over the set of possible states, based on a set of
observations. The POMDP framework is general enough to model a variety of real-world sequential
decision processes (for a review, see [16]).

It was shown in [40] that if the cost of a POMDP is perfectly observable, then the analytical
results on TD and actor-critic algorithms can be transferred without difficulty. In this section,
the application of the LSTD actor-critic algorithm is extended to the case of a POMDP where, in
addition to the state being partially observable, the critic observes the cost only through its (noisy)
observations of the state. To the best of our knowledge, there is no previous work in the literature
that considers such a POMDP model in an actor-critic framework. There can be a number of
reasons why the cost is not directly observable. For example, the wear of an equipment can be
precisely known only at the time of maintenance, not at the time of operation. However, one may
have a less precise but more timely estimate of this cost based on the usage of the equipment. In this
section, and under reasonable assumptions, the actor-critic algorithms are modified to overcome the
imperfect knowledge of costs. An example scenario is the warehouse vehicle dispatching problem
we tackle later.

Consider the formulation introduced in Section 2 and suppose the state x has a bijective rep-
resentation (x(1),x(2), . . . ,x(M)) where x(1) ∈ X

(1),x(2) ∈ X
(2), . . . ,x(M) ∈ X

(M). Of course, the
non-trivial case M > 1 is of interest, especially where the size of the problem grows mostly due
to M , while the cardinality of each individual X

(l) remains moderate. For the observation model,
to which we will also be referring to as the noise model, assume that an observation y is gener-
ated from the true state x according to some known probability distribution p(y|x) represented as
a matrix Py|x (with rows and columns indexed by the possible values of x and y, respectively).
It is further assumed that the observations belong to the state space, i.e., yk is represented by
(y(1),y(2), . . . ,y(M)) where y(l) ∈ X

(l), l = 1, . . . ,M . Note that the partial observability here is in
the sense that observations are subject to noise and errors. Furthermore, it is assumed that the
cost is separable as indicated in the following assumption.

Assumption A
(i) (Separability) The cost function can be written as g(x, u) = g1(x

(1)) + g2(x
(2)) + · · · +

gM (x(M)) + gU (u).

(ii) The noise model can also be expressed as M independent distributions represented by full-rank
matrices P

y(l)|x(l) , l = 1, . . . ,M .

Note that it is realistic to assume the invertibility of P
y(l)|x(l) , because in most applications,

the quality of state observations is reasonably good, hence, P
y(l)|x(l) is close to the identity matrix.

The RSP in the POMDP case is chosen to be a function of the observation; that is, µθ(uk|yk).
This form of RSP can be accommodated by augmenting the state to {xk,yk}. As shown in [40],
the actor-critic algorithm still converges to the optimal policy if the cost is perfectly observed.
For the case where the cost is not perfectly observable, we introduce the following LSTD Partially
Observable (LSTD-PO) actor-critic algorithm.



LSTD-PO Actor-Critic for POMDP with Indirectly Observed Cost

Initialization:

Set z0, α0,A0,b0 and r0 to zeros. Let θ0 take some initial value, potentially corresponding to
a heuristic policy.

Critic:
αk+1 = αk + γk [g̃(yk, uk) − αk] ,

zk+1 = λzk +ψθk
(yk, uk),

bk+1 = bk + γk [(g̃(yk, uk) − αk)zk − bk] ,
Ak+1 = Ak + γk

[

zk(ψ
′
θk

(yk+1, uk+1) −ψ
′
θk

(yk, uk)) − Ak

]

,

rk+1 = −A−1
k bk.

(11)

In the above, λ ∈ [0, 1), γk
△
=

1

k
, and

g̃(y, u) =

M
∑

l=1

∑

x(l)

ν
(l)

I(x(l)),I(y(l))
gl(x

(l)) + gU (u), (12)

where I(·) is a function that returns the index of a given element x(l) in the component space X
(l)

(consistently with the ordering of the rows and columns of P
y(l)|x(l)), and ν

(l)
i,j is the element located

on the ith row and jth column of P−1
y(l)|x(l) . For convenience, from now on the notation ν

(l)

x(l),y(l)

will be used for ν
(l)

I(x(l)),I(y(l))
, and g̃ will be called the cost proxy. As will be shown, this cost proxy

averages to the same value as the true cost.

Actor:
θk+1 = θk − βkΓ(rk)ψ

′
θk

(yk+1, uk+1)r
′
kψθk

(yk+1, uk+1). (13)

The step size sequences follow the same rules as in the previous section. Note that the only difference
here is the introduction of the cost proxy.

Theorem 4.1 For any policy parameter θ, the average true cost ᾱθ equals the average cost proxy

α̃θ =
∑

y,u

η̃θ(y, u)g̃(y, u),

where η̃θ(y, u) is the stationary distribution of the process {yk, uk}.

See Appendix B for the proof.

Remarks :

1. We should clarify that the average true cost ᾱθ is the average cost resulting from the RSP
µθ(u|y) applied to the “noisy” version of the state and is not equal to the average cost of an
RSP µθ(u|x) that has access to the true state. Clearly the optimal (over θ) former RSP is
suboptimal to the optimal latter RSP.

2. We also note that the proposed LSTD-PO actor-critic algorithm optimizes the average cost
proxy α̃θ in the same way the original LSTD actor-critic algorithm optimizes the average true
cost. Then, since according to the above theorem these costs coincide for every θ, it follows
that the LSTD-PO actor-critic optimizes the average true cost.



3. One possible technical concern here is whether the core iteration of the LSTD-PO critic
(defined by (11)) converges like that of the normal LSTD critic (defined by (7)) does. To
address this concern, note that (11) differs from (7) in exactly two ways: first, (11) uses the
sample path of y instead of x; and second, (11) substituted the true cost (ᾱ) with the cost
proxy (α̃). The first difference could affect the convergence of the algorithm if the y-based
process has a different ergodicity property. But that is not possible because y is generated
by x with a full-rank probability transition matrix — consequently the σ-algebra of y is
topologically equivalent to that of x, and the distribution of y stabilizes whenever that of x
stabilizes. On the other hand, the second difference turns out not really a difference, because
Theorem 4.1 shows α̃ = ᾱ for any value of θ. In conclusion, we do not need to give a separate
proof for the convergence of the LSTD-PO actor-critic.

It should be emphasized that the primary role of separability (Assumption A(i)) is to allow
the LSTD-PO algorithm be implemented with mild computation cost. If the state space is not
separable, then a huge matrix Py|x has to be inverted in lieu of M smaller matrices P

y(l)|x(l) . Even
in the case that one of the latter matrices is relatively large, it will typically be sparse, which makes
it appropriate to store and compute its inverse using LU factorization. Very briefly, LU factorization
is a known method to solve a general system of linear equations of the form Ax = b. It factors a
non-singular matrix A ∈ R

n×n as A = PLU where P ∈ R
n×n is a permutation matrix, L ∈ R

n×n

is unit lower triangular, and U ∈ R
n×n is upper triangular. The standard algorithm for computing

an LU factorization is Gaussian elimination with partial pivoting or Gaussian elimination with row
pivoting ([14]). The cost is 2n3

3 flops if no structure in A is exploited where a flop is defined as one
addition, or subtraction, or multiplication, or division of two floating-point numbers. To compute
A−1, we can solve the equations Axi = ei, where xi is the ith column of A−1, and ei is the ith unit
vector, resulting in a total cost of 8n3

3 flops. However, if A is sparse, computing the LU factorization
is less costly and in many cases the cost grows approximately linearly with n when n is large.

Also note that LSTD-PO requires a single column from each inverse matrix of the noise model
at each iteration (the columns corresponding to the observed state), and these could be computed
using the technique above. Thus, not only can the computational cost be dissipated over the
lifetime of the learning algorithm, but some columns of the inverse might not be computed at all
if the corresponding states are never visited. As a final note on computational matters, efficient
techniques for storing the sparse matrix can be found in [19, 36] and [3].

5 Forklift dispatching in warehouse management

In this section, we demonstrate how the proposed LSTD actor-critic can be used effectively in
dealing with a real-world problem (forklift dispatching in warehouses). Our model of the warehouse
described in this section is based on an on-site visit and discussion with the forklift manufacturer and
the warehouse managers. Simulation is used to evaluate the efficiency of the proposed algorithm.

5.1 Setup

Consider a warehouse with multiple items being supplied and demanded dynamically. The items
come in and out of the warehouse through a central depot. After coming in, they are first stored



Figure 1: Schematic top-view of the warehouse and an illustration of Task 1.

at some vertically stacked reserve locations, and then moved to pick-up locations that are on the
ground level and are specific for each item. Fig. 1 and Fig. 2 show a schematic top-view of the
warehouse and a side-view of an isle in the warehouse, respectively.

Three types of tasks are performed in the warehouse:

• Task 1: Moving unloaded items from the depot to the reserve locations.

• Task 2: Moving items from the reserve locations to fill the corresponding pick-up locations.

• Task 3: Moving demanded items from the pick-up locations to the depot.

The forklifts perform Tasks 1 and 2, and Task 3 is done by a different type of vehicle (called
pallet-truck). Any item in the warehouse must go through a complete cycle of tasks in the above
order (i.e., Task 1 → Task 2 → Task 3). Figs. 1, 2 and 3 illustrate Tasks 1 and 2 and an overview
of all tasks in the warehouse, respectively.

The operation of pallet trucks is simple, rigid, and with no substantial opportunity for optimiza-
tion. Only the dispatching of the forklifts is considered here, with the goal of moving items through
the cycle as efficiently as possible. In addition to Tasks 1 and 2 described above, the forklift may
also be commanded to go to the battery/maintenance shop or simply idle. Intuitively, the factors
that need to be considered include the urgency of the demand for specific items, the urgency of
unloading the supplied items and freeing the suppliers’ trucks, traffic congestion experienced by the
forklifts, and the “health” of the forklifts (e.g., battery status, or other indications from a machine
condition monitoring system). However, with a large number of items that have different values,
demand patterns and other contextual variables, forklift dispatching is a high-dimensional dynamic
decision problem.

The problem is naturally formulated as an average-cost infinite-horizon MDP. Let N be the
number of items, I be the number of isles, and F be the number of forklifts in the warehouse. The
state of the system includes:



Figure 2: Schematic side-view of an isle in the warehouse and an illustration of Task 2.

• pi: the level of item i in its pick-up location (i = 1, . . . , N),

• dj : the level of items associated with isle j waiting in the depot (j = 1, . . . , I),

• lk: the location of forklift k, (k = 1, . . . , F ),

• sk: the status of forklift k, (k = 1, . . . , F ),

• hk: health of forklift k, (k = 1, . . . , F ).

The capacities of pick up locations and of the depot are assumed finite, each pi takes values
from a discrete set {−P,−P +1, . . . ,−1, 0, 1, . . . , P −1, P}, and each dj takes values from a discrete
set {0, 1, . . . , Q − 1, Q}. Specifically, pi < 0 indicates that |pi| items are “backordered” at pick-up
location i. The warehouse area is partitioned such that at each time, each forklift is assumed to
be located either next to one of the pick-up locations (identified by 1, . . . , N), or at the depot
(identified by N + 1), or at the battery/maintenance shop (identified by N + 2), hence lk takes
values from a discrete set {1, . . . , N,N + 1, N + 2}. Each sk takes values from a discrete set
{“Idle”, “Battery/Maintenance”, “Task 1”, “Task 2”}, where “Idle” denotes that the forklift is
idle, “Battery/Maintenance” denotes that the forklift is in maintenance or its battery is being
replaced, and “Task 1” or “Task 2” denote that the forklift is performing either Task 1 or Task
2, respectively. Each hk also takes values from a discrete set {0, 1, . . . , B}, where 0 indicates that
the forklift’s battery/health is in “bad” condition, and the higher the value of hk is, the better the
health of the forklift k is. The state of the system, therefore, can be represented by the following
vector of size N + I + 3F :

{p1, . . . , pN , d1, . . . , dI , l1, . . . , lF , s1, . . . , sF , h1, . . . , hF },

Considering that a good number of variables are involved in describing the problem, let’s summarize:
F is the number of forklifts; the status of each forklift takes 4 possible values; I is the number of



Figure 3: Overview of the activities in the warehouse.

isles; N is the number of pickup locations; B + 1 is the number of forklift health levels; 2P + 1 is
the number of stock levels in each pickup location; and Q+ 1 is the number of stock levels of the
depot. Then, the state space of the system has

(2P + 1)N (Q+ 1)I(N + 2)F 4F (B + 1)F

discrete elements.

The arrival processes of deliveries and demands are assumed to follow the Poisson distribution,
whereas the quantities of the deliveries and demands are assumed to follow a discrete uniform
distribution. No deliveries are allowed when the depot is full, and no further demand of an item is
accepted when the current level of the item in its pick-up location is at the lowest possible value
(i.e., the maximum backordered level). Traffic congestion in the ith isle, indicated by Ki is defined
as

Ki = W1Xi +W2Fi,

where Fi is the number of forklifts operating in that isle (known since the position of the forklifts
is part of the state), Xi is an estimate of the pallet truck traffic, defined as

Xi =
∑

{j|IND(j)=i, pj<0}

log(−pj),

and W1 and W2 are constant weights capturing the relative degree according to which pallet trucks
and forklifts contribute to the traffic, respectively. In the above, IND(j) is a function that returns
the index of the isle in which the pick-up location of the jth item is located.

Tasks 1 and 2 are assumed to have exponentially distributed durations with rates that can
depend on the type of the task. Given the current state and the particular forklift (with a known
location) to which either Task 1 or 2 gets assigned, the expected task duration is a certain (increas-
ing) function of the traffic congestion present at the destination isle. We assume that this function
takes values in a finite interval, hence, the rate at which a task gets completed is finite for all states.



Assume also that when a forklift is ordered to remain “Idle” or go to the “Battery/Maintenance”
it remains in the corresponding status for an exponentially distributed amount of time with a rate
that may depend on the status. It follows, that a forklift k maintains each status sk for an expo-
nentially distributed amount of time. Let ρmax the maximum rate (over all states) corresponding
to this exponential distribution.

With the assumptions put in place the state of the system evolves as a continuous time Markov
chain. We uniformize this Markov chain by creating a Poisson clock with rate Fρmax at which
transitions occur. Given the rates of various status durations, it is straightforward to compute
transition probabilities to the next state each time our uniform Poisson clock ticks; clearly, some of
these transitions are self-transitions. We will use our MDP machinery to make (forklift assignment)
decisions only at the transition epochs of this uniformized Markov chain.

The one-step cost g(·) includes the opportunity cost of having shortages in the pickup locations
(g1(·)), the cost associated with the delay of clearing the depot (g2(·)), and the cost of operating
the forklifts (g3(·)), where

g1(x, u) =
N
∑

i=1

ci max(pi, 0), g2(x, u) = cs

I
∑

i=1

di, g3(x, u) = cfnf .

In the above, ci is the price/value of item i times the chance of having a sale per unit of time if the
pickup location is stocked at or above demand; cs is the average cost of delay in clearing the depot
per pallet per unit of time; cf denotes the average cost of operating a forklift per unit of time; and
nf denotes the number of forklifts that are being operated (i.e., with a status equal to “Task 1” or
“Task 2”). The one-step cost rate g(·) is then defined as

g(x, u) = g1(x, u) + g2(x, u) + g3(x, u).

As we mentioned in the Introduction, the forklifts are fitted with wireless sensors and communi-
cate with the dispatching system via a warehouse wireless sensor network (see [30] for an overview
of the sensor network setup). The sensors on each forklift provide the forklift’s location (needed in
order to determine congestion at the isles) as well as various forklift health indicators (e.g., battery
status). These observations are “noisy” due to estimation errors but they fit our POMDP frame-
work. To see this, we show that the separability assumption of the cost function (cf. Assumption
A) holds. We can represent the bijective representation of the state as

x(1), . . . , x(N) = p1, . . . , pN ,

x(N+1), . . . , x(N+I) = d1, . . . , dI ,

x(N+I+1), . . . , x(N+I+F ) = l1, . . . , lF ,

x(N+I+F+1), . . . , x(N+I+2F ) = s1, . . . , sF ,

x(N+I+2F+1), . . . , x(N+I+3F ) = h1, . . . , hF

and we can write

g(x, u) = g1(x
(1)) + g2(x

(2)) + · · · + gN+I+3F (x(N+I+3F )) + gU (u),

where

gi(x
(i)) =











ci max(pi, 0), if 1 ≤ i ≤ N ,

csdi−N , if N + 1 ≤ i ≤ N + I,

0, otherwise,



and
gU (u) = cfI1(u).

It follows that Assumption A(i) holds. Furthermore, because the processes of location detection
and of the battery/health readings from each forklift are all independent of each other, Assumption
A(ii) also holds and the noise models can be constructed (e.g., using sampling methods). Therefore,
the result of Theorem 4.1 is applicable.

5.2 The RSP

The action space U contains N + I + 2 elements:

1. the first N elements correspond to Task 2 assignments, where each element maps to one of
the N pick-up locations;

2. the next I elements concern Task 1 assignments, where elementN+i, i = 1, . . . , I, corresponds
to moving items from the depot to a reserve location in isle i;

3. the (N + I + 1)st element corresponds to “going to the battery/maintenance shop”; and,
finally,

4. the (N + I + 2)nd element corresponds to “idling”.

Our RSP is constructed by exponential functions with a 4-dimensional parameter vector

θ = (θ1, θ2, θ3, θ4).

The scalar elements of θ are used to weigh, respectively, the urgency of the demand (θ1), the delay
at the depot (θ2), traffic congestion (θ3), and forklift health (θ4). The RSP is given by

µθ(u|x) =
1

(
∑N+I+2

i=1 ai)











a1

a2
...

aN+I+2











,

where

ai =























Pi e
θ1ci(U−pi)+θ3K−1

I(i) , 1 ≤ i ≤ N,

Di−N eθ2di−N+θ3K−1
i−N , N + 1 ≤ i ≤ N + I,

B eθ4 , i = N + I + 1,

1, i = N + I + 2,

in which U is the maximum capacity of pick-up locations, and

Pi =

{

0, if the pick-up location of the ith item is full,

1, otherwise,

Di =

{

0, if there is no item associated with the ith isle waiting in the depot,

1, otherwise,

B =

{

1, if the health condition of the forklift is “bad”,

0, otherwise.

(14)



Note that, we are optimizing each forklift as if it were a single, independent agent. In our
uniformized Markov chain at most one forklift completes its current status at any given epoch;
when this happens we use the RSP described above to assign a new status to it.

Some observations on the structure of the RSP are in order. The probability of filling pick-
up location i increases with the value ci of item i and the backlog U − pi but it decreases with
the congestion level at the corresponding isle I(j). Note that this probability is controlled by
parameters θ1 and θ3. Similarly, the probability of assigning a forklift to move material from the
depot to a reserve location in isle j is increasing with the amount of such material accumulated at
the depot (dj) and decreasing with the congestion in isle j. The latter probability is controlled by
parameters θ2 and θ3. Finally, the probability of sending the forklift to the maintenance/battery
shop is controlled by the parameter θ4. The task of the actor-critic algorithm is to optimize the
policy performance over θ = (θ1, . . . , θ4).

5.3 Numerical results

We first obtained the exact optimal policy for instances of a very small-scale version of this problem
which involves 2 forklifts (F = 2), 2 isles (I = 2), and 4 items (N = 4) using standard Dynamic
Programming (DP) – value iteration in particular. We set P = 2, Q = 1, and B = 1. We
generated 12 instances of this small-scale version (termed S-1 up to S-12) by varying the values
of the parameters in the cost function as well as the rates of arrivals of deliveries and demands.
We then used our LSTD actor-critic algorithm to optimize the RSP outlined earlier. The results
are shown in Table 1 (AC is used as abbreviation for actor-critic algorithm). In addition, Fig. 5
illustrates the progress of the algorithm for the instance S-1. For the small-scale problem, our actor-
critic algorithm took a much shorter time than DP and consistently found near-optimal solutions
along different sample paths (within 10% of the optimal DP cost). We also tracked the changes
in the average congestion (Fig. 6), average availability of items to fulfill demand (Fig. 7), average
number of items waiting at the depot (Fig. 8), and average delay at the depot (Fig. 9). The purpose
is to qualitatively understand how the policy we obtained trades-off these factors, which is useful
in designing a good heuristic policy. For instance, we found from the DP solution that Task 2 has
higher priority than Task 1.

We then used this insight to design a heuristic policy that we used as a benchmark for larger-scale
problems where DP becomes computational intractable. The description of the heuristic is given
in Fig. 4. It is interesting that it is consistent with state-of-the-art policies used by practitioners in
actual warehouses. When applied to the small-scale problem above it performs within 20% of the
optimal cost.

In order to evaluate the efficiency of our approach, we used it to learn a locally optimal RSP for
a larger-scale problem involving 10 forklifts, 4 isles and 32 items. Note that with only 2 forklifts,
2 isles and 4 items, the state space contains 5, 760, 000 discrete elements. The size of the state
space for the larger-scale problem is much greater (8.26e+ 47 discrete elements), hence, it cannot
be solved with exact DP in a reasonable amount of time.

We generated 10 instances of the larger-scale version (termed L-1 up to L-10) by varying the
values of the parameters in the cost function as well as the parameters of the distribution functions
characterizing arrivals of deliveries and demands. We then tested our LSTD actor-critic algorithm
to see if it is able to learn a better policy than the heuristic policy of Fig. 4. The results are



As soon as a forklift finishes its task, assign a new task to it according to the following order of
priorities:

1. If the forklift’s health is “bad”, then the forklift is commanded to go to the bat-
tery/maintenance shop.

2. If there are shortages in the pick-up locations, then Task 2 is assigned. When more than one
items are in shortage, the item with the highest unit price is served first.

3. If there are items waiting at the depot, then Task 1 is assigned.

4. Otherwise, the forklift is instructed to idle.

Figure 4: The description of the heuristic policy for the forklift dispatching problem.

Table 1: Results obtained by the algorithms for small-scale problems.

Instance S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12

Optimal cost (DP) 5.44 12.97 7.43 6.32 14.65 9.26 5.82 14.02 9.07 8.18 15.14 9.91

AC cost 5.95 13.23 7.95 6.51 15.97 10.02 5.98 14.86 9.43 8.75 16.53 10.48
AC cost

Optimal cost 1.09 1.02 1.07 1.03 1.09 1.08 1.03 1.06 1.04 1.07 1.09 1.06

Heuristic cost 6.52 15.05 9.36 7.27 17.29 10.93 6.93 16.82 11.16 9.73 17.71 11.69
Heuristic cost
Optimal cost 1.20 1.16 1.26 1.15 1.18 1.18 1.19 1.20 1.23 1.19 1.17 1.18

encouraging (see Table 2). In addition, Fig. 10 illustrates the progress of the algorithm for the
instance L-1. The LSTD actor-critic converged to policies that represent more than a 15% cost
reduction compared to the heuristic policy. In some instances, this improvement exceeds 25%. In
particular, we noticed that the actor-critic algorithm did a good job avoiding traffic congestion.

In addition, Fig. 5 and Fig. 10 also compare the performance of our proposed LSTD actor-critic
with the traditional TD-based actor-critic developed in [25] (with λ in the TD(λ) critic set to 0.75)
and the algorithm in [32] (natural actor-critic). Note that our LSTD actor-critic shows smoother
and faster convergence behavior than both alternatives.

We also used the LSTD-PO actor-critic to learn the optimal policy under partial observability
of states and cost. As shown in Fig. 5 and Fig. 10, the simulation results confirm Theorem 4.1.
We mention that the LSTD-PO algorithm converges to 10.63 for the S-1 instance which, as shown
in Fig. 5, is much higher than the cost achieved under perfect state observations. To compare the
former with a more precise baseline, a lower bound of the optimal average cost for the imperfect
observation case was computed using the methods given in [41]. To obtain this lower-bound, we
discretized the belief space of the POMDP into a finite number of belief points and computed the



Figure 5: Results obtained by the algorithms for the S-1 instance.

Table 2: Results obtained by the algorithms for larger-scale problems.

Instance L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10

Heuristic cost 18.07 26.11 22.44 31.72 27.32 38.87 31.06 40.43 33.38 41.82

AC cost 14.11 21.41 16.61 26.64 21.58 31.48 24.85 33.15 25.37 34.29
Heuristic cost - AC cost

Heuristic cost 0.22 0.18 0.26 0.16 0.21 0.19 0.20 0.18 0.24 0.18

approximating functions at these points using multi-chain algorithms. We discretized the belief
space (which is a simplex in an |X|-dimensional space) into a regular grid according to pattern k-E
introduced in Section 4 of [41]. Briefly, the pattern k-E consists of k grid points on each edge, in
addition to the vertices of the belief simplex. We then used the pattern 10 − E and obtained the
value 9.7 for the lower-bound on the optimal average cost which implies that LSTD-PO finds near-
optimal solutions. Finally, we mention that the dimensionality of the belief space for the larger-scale
problem is too large, hence, it is impractical to obtain such a lower-bound in a reasonable amount
of time.

The numerical experiments above were implemented in C on a PC with 1.4 GHz CPU speed.
On average, the exact DP for the small-scale instances took about 10 hours to converge whereas the
actor-critic converged within 20 minutes. For the larger-scale instances, the actor-critic algorithm
took about 2 hours to converge.



Figure 6: Congestion data obtained by the proposed actor-critic algorithm for the S-1 instance.

6 Conclusions

This paper integrated a least-squares temporal difference learning method into an efficient actor-
critic architecture where the actor and the critic updates are carried out concurrently. The conver-
gence of the algorithm was established, and the performance of the algorithm was demonstrated by
solving a forklift dispatching problem arising in warehouse management. For that application, and
for instances of realistic size, we demonstrated a 20% performance improvement over a heuristic
similar to the ones used in practice. We also extended the applicability of actor-critic algorithms
to general cases of POMDPs where even the cost is not perfectly observable. The algorithms
presented in this paper use policies that are functions of immediate observations. Although in a
POMDP setting, more complex policies such as controllers with internal states can be used ([6, 2]),
the actor-critic methods can also be used as alternatives to these methods in learning finite-state
controllers (see [40]). In the POMDPs with indirectly observed cost, the use of such alternatives
could be an interesting direction for further research.
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Appendix

A Proof of Theorem 3.1

We first cite the theory of linear stochastic approximation driven by a slowly varying Markov chain
[24] (with simplifications).



Figure 7: Pick-up location data obtained by the proposed actor-critic algorithm for the S-1 instance.

Let {yk} be a finite Markov chain whose transition probabilities depend on a parameter θ ∈ R
n.

Consider a generic iteration of the form

sk+1 = sk + γk(hθk
(yk+1) − Gθk

(yk+1)sk) + γkΞksk, (15)

where sk ∈ R
m, Ξk is some m ×m-matrix, and hθ(·) ∈ R

m,Gθ(·) ∈ R
m×m are θ-parameterized

vector and matrix functions, respectively. This equation sets up a structure of a regression process
whose weight is also determined by a stochastic process. The simultaneous-update actor-critic we
are considering is a special case. It has been shown in [24] that the critic in (15) converges if the
following set of conditions are met.

Condition 1
1. The sequence {γk} is deterministic, non-increasing, and

∑

k

γk = ∞,
∑

k

γ2
k <∞.

2. The random sequence {θk} satisfies ||θk+1−θk|| ≤ βkHk for some process {Hk} with bounded
moments, where {βk} is a deterministic sequence such that

∑

k

(

βk

γk

)d

<∞ for some d > 0.

3. Ξk is an m×m-matrix valued martingale difference with bounded moments.

4. For each θ, there exist h̄(θ) ∈ R
m, Ḡ(θ) ∈ R

m×m, and corresponding m-vector and m×m-
matrix functions ĥθ(·), Ĝθ(·) that satisfy the Poisson equation. That is, for each y,

ĥθ(y) = hθ(y) − h̄(θ) + (Pθĥθ)(y),

Ĝθ(y) = Gθ(y) − Ḡ(θ) + (PθĜθ)(y).



Figure 8: Depot data obtained by the proposed actor-critic algorithm for the S-1 instance.

5. For some constant C and for all θ, we have max(||h̄(θ)||, ||Ḡ(θ)||) ≤ C.

6. For any d > 0, there exists Cd > 0 such that supk E[||fθk
(yk)||

d] ≤ Cd, where fθ(·) represents

any of the functions ĥθ(·), hθ(·), Ĝθ(·) and Gθ(·).

7. For some constant C > 0 and for all θ, θ̄ ∈ R
n, max(||h̄(θ) − h̄(θ̄)||, ||Ḡ(θ) − Ḡ(θ̄)||) ≤

C||θ − θ̄||.

8. There exists a positive measurable function C(·) such that for every d > 0, supk E[C(yk)
d] <

∞, and ||fθ(y) − fθ̄(y)|| ≤ C(y)||θ − θ̄||.

9. There exists a > 0 such that for all s ∈ R
m and θ ∈ R

n

s′Ḡ(θ)s ≥ a||s||2.

If these conditions are all met, then

lim
k→∞

sk = Ḡ(θk)
−1h̄(θk).

For now, let’s focus on the first two items of Condition 1. For any matrix A let v(A) be a column
vector that stacks all row vectors of A (also written as column vectors). Simple algebra suggests
that the core iteration of the LSTD critic can be written as (15) with

sk =









Mαk

bk

v(Ak)
1









, yk = (xk, uk, zk),

hθ(y) =









Mg(x, u)
g(x, u)z

v(z((Pθψ
′
θ)(x, u) −ψ′

θ(x, u)))
1









, Gθ(y) =









1 0 0 0
z/M I 0 0
0 0 I 0
0 0 0 1









, (16)



Figure 9: Delay data obtained by the proposed actor-critic algorithm for the S-1 instance.

Ξk =









0 0 0 0
0 0 0 0
0 0 0 v(zk(ψ

′
θk

(xk+1, uk+1) − (Pθψθ)′(xk, uk)))

0 0 0 0









,

where M is an arbitrary (large) positive constant whose role is to facilitate the convergence proof.

The step-sizes γk and βk in (7) and (9) correspond exactly to the γk and βk in Condition 1.(1)
and 1.(2), respectively. If the MDP has finite state and action space, then the conditions on {βk}
reduce to ([24])

∑

k

βk = ∞,
∑

k

β2
k <∞, lim

k→∞

βk

γk

= 0, (17)

where {βk} is a deterministic and non-increasing sequence. Note that we can use γk = 1/k (cf.
Condition 1). The following theorem establishes the convergence of the critic.

Lemma A.1 [Critic Convergence] For the LSTD actor-critic (7) and (8) with some step-size se-
quence {βk} satisfying (17), the sequence sk is bounded, and

lim
k→∞

|Ḡ(θk)sk − h̄(θk)| = 0. (18)

Proof : To show that (15) converges with s,y,hθ(·),Gθ(·) and Ξ substituted by (16), the condi-
tions 1.(1)-(9) should be checked. However, a comparison with the convergence proof for the TD(λ)
critic in [25] gives a simpler proof. Let

Fθ(y) = z(ψ′
θ(x, u) − (Pθψθ)′(x, u)).

While proving the convergence of the TD(λ) critic operating concurrently with the actor, [25]
showed that

h̃θ(y) =

[

Mg(x, u)
g(x, u)z

]

, G̃θ(y) =

[

1 0
z/M Fθ(y)

]

,



Figure 10: Results obtained by algorithms for the larger-scale problems.

and

Ξ̃k =

[

0 0
0 zk(ψ

′
θk

(xk+1, uk+1) − (Pθψθ)′(xk, uk))

]

satisfy Condition 1.(3)-1(8). In our case, (16) can be rewritten as

hθ(y) =





h̃θ(y)
−Fθ(y)

1



 , Gθ(y) =





1 0 0
z/M I 0
0 0 I



 , and Ξk =

[

Ξ̃k

0

]

. (19)

Note that hθ, Gθ and Ξ are linear functions of h̃θ(y), Fθ(y), z, and Ξ̃, thus share their convergence
properties. It is clear then that they also satisfy satisfy Conditions 1.(3)-1(8). So, hθ(·),Gθ(·) and
Ξk also satisfy Condition 1.(3)-1(8). Meanwhile, the step-size {γk} satisfies Condition 1.(1), and
the step-size {βk} satisfies Eq. (17) (which is as explained above implies Condition 1.(2)). Now,
only Condition 1(9) remains to be checked. To that end, note that all diagonal elements of Gθ(y)
equal to one, and the only off-diagonal block is a bounded matrix divided by M . So, Gθ(y) is
positive definite if M , which can be set arbitrarily, is large enough. Thus, Condition 1(9) also
holds. This proves the convergence.

Last, to show that Equation (18) is satisfied, one only needs to invoke the same correspondence
and the result in [25].

Theorem 3.1 follows by setting φθ = ψθ and following the proof in Section 6 of [25].



B Proof of Theorem 4.1

Under the ergodicity conditions mentioned earlier, {xk} and {xk, uk} are Markov chains with sta-
tionary distributions under any policy θ. Let πθ(x) and ηθ(x, u) denote the stationary distributions
of {xk} and {xk, uk}, respectively. Since the observations are generated directly from {xk}, {yk}
and {yk, uk} also have stationary distributions (denoted by π̃θ(y) and η̃θ(y, u), respectively). The
average cost proxy can be rewritten as

α̃θ =
∑

y,u

(

∑

x

πθ(x)µθ(u|y)p(y|x)

)

g̃(y, u)

=
∑

y,u,x



πθ(x)µθ(u|y)p(y|x)
M
∑

l=1

∑

ξ(l)

ν
(l)

ξ(l),y(l)
gl(ξ

(l))



+
∑

y,u,x

πθ(x)µθ(u|y)p(y|x)gU (u). (20)

Let Pθ(u|x) =
∑

y
µθ(u|y)p(y|x). Then the second term of Eq. (20) reduces to

∑

u,x

πθ(x)Pθ(u|x)gU (u) =
∑

x,u

ηθ(x, u)gU (u),

which is a term readily found in the average true cost. Since
∑

u µθ(u|y) = 1, the first term of Eq.
(20) equals

∑

y,x



πθ(x)p(y|x)
M
∑

l=1

∑

ξ(l)

ν
(l)

ξ(l),y(l)
gl(ξ

(l))





=
∑

x,y(1),...,y(M)



πθ(x) ·

( M
∏

m=1

p(y(m)|x)

)

·
M
∑

l=1

∑

ξ(l)

ν
(l)

ξ(l),y(l)
gl(ξ

(l))





=
∑

x



πθ(x)
M
∑

l=1

∑

y(1),...,y(M)





( M
∏

m=1

p(y(m)|x)

)

·
∑

ξ(l)

ν
(l)

ξ(l),y(l)
gl(ξ

(l))







 . (21)

Note that for the marginal distribution of y(l) given x it holds

M
∑

i=1, i6=l

∑

y(i)

(

M
∏

m=1

p(y(m)|x)

)

= p(y(l)|x) = p(y(l)|x(l)).

The right hand side of Eq. (21) becomes

∑

x



πθ(x)
M
∑

l=1

∑

y(l)

p(y(l)|x(l))
∑

ξ(l)

ν
(l)

ξ(l),y(l)
gl(ξ

(l))





=
∑

x



πθ(x)

M
∑

l=1

∑

ξ(l)

gl(ξ
(l))
∑

y(l)

p(y(l)|x(l))ν
(l)

ξ(l),y(l)



 . (22)



From the definition of ν
(l)

x(l),y(l) ,

∑

y(l)

p(y(l)|x(l))ν
(l)

ξ(l),y(l)
=

{

1, if ξ(l) = x(l),
0, otherwise,

thus, the right hand side of (22) equals

∑

x

πθ(x)
M
∑

l=1

gl(x
(l)).

Now both terms in Eq. (20) have been calculated and we conclude

α̃θ =
∑

x

πθ(x)
M
∑

l=1

gl(x
(l)) +

∑

x,u

ηθ(x, u)gU (u)

=
∑

x,u

ηθ(x, u)g(x, u) = ᾱθ.
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